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Abstract

Accurate 3D scene understanding is essential for
robotics and augmented reality (AR), where high-quality
instance segmentation and semantic scene graphs enable
downstream reasoning and interaction. While recent meth-
ods such as ConceptGraphs [4] leverage vision-language
models (VLMs) and large language models (LLMs) to seg-
ment RGB-D sequences and build open-vocabulary scene
graphs, they are limited by incomplete viewpoint cover-
age, resulting in partial object reconstructions. This paper
proposes a complementary approach that integrates prior
knowledge in the form of known 3D object models to refine
and complete partial reconstructions. The method identifies
candidate object segments using semantic similarity from
CLIP [9|] embeddings and aligns reference objects via ro-
bust geometric registration pipelines based on FPFH [10]
or PREDATOR [J5)] features, followed by RANSAC [3]] and
ICP [13]. Integrated into the ConceptGraphs pipeline, the
approach shows improved global and per-object segmen-
tation accuracy on the Replica [11] dataset, particularly
for large and partially observed objects. This work demon-
strates the effectiveness of incorporating object-level priors
for more complete and accurate 3D scene representations,
and lays the groundwork for injecting instance-specific se-
mantics and affordances into scene graphs.

1. Introduction

3D semantic understanding is a foundational capability
for robotics and augmented reality (AR) applications. In-
stance segmentation of 3D point clouds and the construction
of semantic scene graphs are key components for building
rich, structured representations of real-world environments.
Recent advances have leveraged RGB-D data in combina-
tion with vision-language models (VLMs) and large lan-
guage models (LLMs) to support both closed- and open-
vocabulary semantic understanding. Notable examples in-
clude ConceptGraphs [4], Open3DSG [6], and OpenFun-
Graph [12]], which demonstrate the potential of language-
integrated perception systems.
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Despite their promise, current methods face several lim-
itations. The quality of 3D reconstruction and instance
segmentation is often constrained by incomplete viewpoint
coverage, leading to partial object reconstructions and geo-
metric artifacts. Additionally, scene graph generation meth-
ods typically achieve only 60-80% accuracy in semantic
and relational understanding, due in part to challenges in
multi-view RGB-D capture and the use of general-purpose
models trained on broad internet-scale datasets rather than
environment-specific domains.

This project aims to address these limitations by incor-
porating prior knowledge of the environment into the map-
ping process. In many real-world robotics and AR scenar-
ios, the types of objects likely to be encountered—such as
specific pieces of furniture, appliances, or machinery—are
known in advance. The central hypothesis is that integrat-
ing reference 3D models and associated semantic labels
for known objects can improve the quality of the resulting
point cloud and enhance instance-level recognition accu-
racy. Such object-level specificity also allows the inclusion
of additional information—such as affordances and interac-
tion capabilities—which can strengthen the expressiveness
of the scene graph (e.g., identifying and annotating how to
operate a particular coffee machine).

To explore this hypothesis, this project focuses on the
perception layer, proposing a hybrid 3D mapping approach
that combines generic RGB-D + VLM-based mapping (as
implemented in ConceptGraphs [4]) with a reference-based
registration module. This module leverages two point
cloud registration pipelines—one based on FPFH [10] with
RANSAC [3] and ICP [13], and another using the learning-
based PREDATOR [5] model followed by RANSAC and
ICP—to align known object models within the scene. The
method is integrated into the ConceptGraphs stack and
forms the foundation for follow-up work targeting down-
stream reasoning and planning.

2. Related Work

The main inspiration of this project, ConceptGraphs [4]
builds an open-vocabulary 3D scene graph from a sequence
of posed RGB-D images. The method uses generic instance



segmentation models to segment regions from RGB images,
extract semantic feature vectors for each, and project them
to a 3D point cloud. These regions are incrementally as-
sociated and fused from multiple views, resulting in a set
of 3D objects and associated vision (and language) descrip-
tors. Then large vision and language models are used to
caption each mapped 3D objects and derive inter-object re-
lations, which generates the edges to connect the set of ob-
jects and form a graph. The resulting 3D scene graph pro-
vides a structured and comprehensive understanding of the
scene and can further be easily translated to a text descrip-
tion, useful for LLM-based task planning.

A related project is OpenFunGraph [12], which builds
functional 3D scene graphs. Unlike traditional 3D scene
graphs that focus on spatial relationships of objects, func-
tional 3D scene graphs capture objects, interactive ele-
ments, and their functional relationships. Similar to Con-
ceptGraphs this method also leverages foundation mod-
els, including visual language models (LLAVA [7]) and
large language models (ChatGPT [8]]), to encode functional
knowledge. The authors claim, that the method significantly
outperforms adapted baselines, including Open3DSG and
ConceptGraph, demonstrating its effectiveness in modeling
complex scene functionalities. While both ConceptGraphs
and OpenFunGraph provides great scene graph building
performance, they are not leveraging prior wknoledge of the
environment. Depending on the 3D environment mapping
circumstances, large chunks of objects can remain unrecon-
structed. This is where I want to make improvements.

Scan2CAD [2]] and SceneCAD [?] are two influential
methods that address the problem of aligning 3D mod-
els to RGB-D scans of indoor environments. Scan2CAD
focuses on matching individual objects in scans to CAD
models from ShapeNet by learning geometric correspon-
dences via a 3D convolutional neural network, followed
by optimization to estimate 9DoF alignments. In contrast,
SceneCAD goes beyond per-object alignment and jointly
optimizes both object placements and the surrounding room
layout using a graph-based reasoning module, producing a
globally consistent and lightweight CAD reconstruction of
the entire scene. Both methods aim for plausible and se-
mantically consistent reconstructions using category-level
CAD models, but do not attempt to identify or align specific
instances of known objects. In this project, I pursue a more
targeted goal: leveraging prior knowledge of known object
instances—represented as labeled 3D point clouds—to im-
prove the quality of the 3D map. By combining semantic
filtering using CLIP [9] embeddings with robust geomet-
ric registration techniques (FPFH/PREDATOR, RANSAC,
and ICP), my method enables instance-level alignment of
specific reference objects. This allows not only for more
complete and accurate reconstruction of known objects but
also lays the groundwork for integrating object-specific se-
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mantics and affordances in downstream scene understand-
ing.

For the pointy cloud registration, I have been relying
on two main body of work: Fast Point Feature Histograms
(FPFH) [10] and the PREDATOR [5] method. FPFH is used
to generate local geometric descriptors for sampled key-
points in both the source and target point clouds. These
descriptors encode surface normals and spatial relation-
ships with neighboring points, providing a robust feature
representation even in noisy environments. Once com-
puted, FPFH descriptors are matched between the two point
clouds to establish candidate correspondences. To estimate
a robust rigid transformation, Random Sample Consensus
(RANSACQC) [3] is employed. RANSAC iteratively samples
minimal sets of correspondences (typically three), com-
putes transformation hypotheses, and selects the one that re-
sults in the highest number of inliers—i.e., correspondences
that are spatially consistent under the proposed transforma-
tion. This process yields a coarse alignment that can be re-
fined with the Iterative Closest Point (ICP) [13] algorithm.

PREDATOR is a deep learning-based model designed
for pairwise registration of 3D point clouds, particularly ef-
fective in scenarios with low overlap between scans. The
core innovation lies in its overlap-attention module, which
enables early information exchange between the latent rep-
resentations of the two point clouds. This mechanism al-
lows the model to predict per-point overlap and matcha-
bility scores, effectively identifying regions that are both
salient and common to both point clouds. By focusing on
these overlapping regions, PREDATOR enhances the selec-
tion of interest points for matching. The architecture em-
ploys a combination of graph neural networks (GNNs) and
transformer-based cross-attention mechanisms to refine fea-
ture descriptors conditioned on both point clouds. PREDA-
TOR demonstrates promising results in low-overlap sce-
narios. I have leveraged an existing model, however the
PREDATOR model can be fine trained and fine-tuned for
specific scenes.

3. Method

To motivate the proposed improvement, we first revisit
the ConceptGraphs [4] pipeline in more detail. Concept-
Graphs incrementally constructs a 3D semantic scene graph
from a sequence of RGB-D frames. Each object in the scene
is represented by a 3D point cloud and a semantic feature
vector (language embedding). The core processing steps,
illustrated in Figure(l} are as follows:

1. Class-agnostic 2D Segmentation: Each RGB frame
is processed by a generic segmentation model (e.g.,
SAM) to extract object masks. These regions are em-
bedded using CLIP [9] to obtain semantic features,
then projected into 3D and transformed into the global
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Figure 1. Overview of the ConceptGraphs method (dark blue) with
input and output data (light blue). Note the placeholder for the
proposed method (darg orange) and its input and outputs (light
orange).

map frame using depth and pose data.

Object Association: New segments are matched to
existing objects using a similarity score combining ge-
ometric similarity (via DBSCAN clustering and near-
est neighbor statistics) and semantic similarity (via co-
sine distance between CLIP features). Hungarian as-
signment is used to associate detections with objects.

Object Fusion: When a segment matches an existing
object, its feature vector and point cloud are merged
into the object representation. Feature embeddings are
updated using a weighted average, and redundant 3D
points are downsampled.

Node Captioning: For each object node, top-10 im-
age crops are selected and passed to a vision-language
model (LLaVA) with prompts like describe the central
object in the image- Candidate captions are refined us-
ing GPT-4 to produce final descriptions.

Scene Graph Generation: Edges between objects are
inferred by computing 3D bounding box IoUs to form
a dense graph. A minimum spanning tree (MST) is
used for pruning. Edges are annotated using an LLM
with relational prompts (e.g., A on B) to infer spatial
and semantic relationships.

In downstream applications such as robotic task plan-
ning, the final scene graph is converted into structured
JSON representations containing each object’s caption and
3D pose. These are passed to an LLM to interpret user
queries and trigger corresponding robotic actions (e.g.,
grasping or navigation).

Note the placeholder of the proposed method in the base-
line Conceptgraphs flow on [T]with its inputs and outputs.

3.1. Proposed Method: Object-Specific Point Cloud
Refinement

This project focuses on improving the quality of the seg-
mented 3D map by leveraging known reference objects.
Specifically, a curated set of reference 3D object models
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Figure 2. The flow of the proposed method. Notice the input data
dependencies and the iteration loop.

and labels is used to register and refine the corresponding
segments in the ConceptGraphs-generated map, enhancing
completeness and accuracy. While reference objects could
also be used to improve scene graph generation, this project
focuses solely on the mapping aspect.

The proposed pipeline builds upon the existing Concept-
Graphs scene graph and its object-wise language embed-
dings. The input includes the initial segmented map, per-
object semantic embeddings, and a list of known reference
object models and labels. As illustrated in Figure Y, the
refinement process consists of the following steps:

1. Reference Feature Generation: For each reference
object, a semantic embedding is generated using
CLIP—either from the object label or from renderings

of the reference 3D model.

Candidate Matching: Cosine similarity is computed
between the reference embedding and all object em-
beddings in the scene graph. A similarity threshold
(empirically set to 2.7) is used to identify candidate
matches for each reference object.

Feature Extraction: For each candidate-reference
pair, the corresponding point clouds are subsam-
pled, and features are extracted using either FPFH or
PREDATOR.

Initial Registration (RANSAC): Global registration
is performed using RANSAC to align the candidate
and reference point clouds based on their features.

Refinement (ICP): The alignment is refined using the
Iterative Closest Point (ICP) algorithm.

Fitness Evaluation and Iteration: Open3D’s
evaluate_registration function is used to as-
sess the alignment via the fitness metric, which mea-
sures the proportion of matched points within a thresh-
old distance. If the fitness exceeds a set threshold (e.g.,
0.7), the registration is accepted and the map is up-
dated. Otherwise, additional iterations are attempted
using alternative parameters. If all attempts fail, the
original map object is retained.



3.2. Registration Methods: FPFH and PREDATOR

Both FPFH and PREDATOR are employed for global
registration. FPFH is a fast, handcrafted descriptor encod-
ing local geometric features via histograms of angular re-
lationships. It is lightweight and effective for coarse align-
ment but lacks semantic understanding and struggles with
low-overlap or noisy data. PREDATOR is a learned feature
extractor using graph neural networks and attention mech-
anisms to reason about overlap and matchability between
point clouds. It produces context-aware features and per-
forms well under challenging conditions but is more com-
putationally intensive.

Each method requires tuning of point cloud downsam-
pling parameters. For the Open3D-based FPFH imple-
mentation (based on an Open3D example I have cus-
tomized [1]), the voxel_size controls downsampling
granularity. For the PREDATOR implementation that [ have
reworked, voxel_down_sample serves a similar role.
Smaller voxel values preserve fine detail and are suitable
for intricate objects, while larger values improve robustness
and performance for large or noisy scenes. The optimal
value depends on object size, shape complexity, and scan
density. In this implementation, hardcoded configurations
are used, though an adaptive approach could be explored in
future work.

3.3. Implementation Strategy

Note, that the registration methods are non-
deterministic, and depending on the object sizes, different
parameters and methods perform better. Thus, my reg-
istration procedure iterates through multiple parameter
combinations. FPFH-based registration is tested with
voxel_size values of 0.02 and 0.1. PREDATOR-based
registration is tested with voxel_down_sample values
of 0.025 and 0.08. Each configuration is attempted up to
3 times. After each attempt, the fitness score is computed.
If it exceeds 0.7, the transformation is accepted and the
corresponding reference object is integrated into the scene.
If no configuration meets the threshold, the original object
remains unchanged.

4. Dataset

This project utilizes the Replica Dataset [11], a high-
quality synthetic indoor dataset that provides ground-truth
3D point clouds, per-instance semantic segmentation la-
bels, and rendered RGB-D image sequences. These fea-
tures make it well-suited for evaluating the ConceptGraphs
pipeline and the proposed refinement method. Figure X il-
lustrates the room0 scene from the dataset, showing both
an RGB image and its corresponding semantic segmenta-
tion.

To enable the evaluation of my method, the Replica
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Figure 3. The roomO scene from the Replica dataset with ground
truth segmentation on the right.

dataset is preprocessed in the following steps:

1. Baseline Scene Reconstruction: First, I generate the
baseline segmented 3D maps using the ConceptGraphs
pipeline. These serve as the input to my method.
Figure [ shows example reconstructions and segmen-
tations produced by ConceptGraphs for the “room0”
scene. As shown, many objects are only partially
reconstructed due to limited and suboptimal camera
viewpoints—an issue frequently encountered in real-
world robotics and AR scenarios.

Ground-Truth Subset Filtering: Due to limitations
in ConceptGraphs’ ability to reconstruct large planar
surfaces like walls, I focus the evaluation on recon-
structing and segmenting foreground objects such as
furniture and appliances. I preprocess the ground-truth
point cloud by excluding structural elements like walls,
doors, windows, and vents. The resulting filtered sub-
set serves as a reference for evaluating segmentation
performance. An example is shown in Figure[5]

. Reference Objects and Labels: I manually select a
subset of reference objects from each scene using the
ground-truth segmented point cloud. These objects
are centered and randomly rotated to provide a realis-
tic registration challenge. Each selected object is also
paired with a reference label (e.g., chair, table), which
is used for language-based matching in the proposed
pipeline. An example is shown in Figure[5]

To assess the robustness of the reconstruction process, I
also experiment with varying levels of RGB-D frame sub-
sampling. While the Replica dataset provides up to 2000
RGB-D frames per scene, ConceptGraphs typically oper-
ates on a default subset of 200 frames. In my experi-
ments, I adopt this default as the baseline and addition-
ally test subsampling rates of 1:2 and 1:4 (i.e., 100 and 50
frames, respectively). These variations allow me to evaluate
how both the baseline ConceptGraphs method and the pro-
posed reference-object-based enhancement perform under
reduced visual input conditions.

Scenes room0 and room2 were selected for evaluation.
Both contain suitable reference objects, while room?2 poses



Figure 4. Mapping results from the ConceptGraphs method. Note
the incomplete reconstructions.

room0O reference objects

=

® g
§
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Figure 5. Ground truth scene (after removing the walls, ceiling
and floor) and reference objects for the Replica room0 and room2
scenes. Note, that reference objects are centered and randomly
rotated before use.

room0 GT
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room2 GT

a greater challenge due to incomplete reconstructions—e.g.,
chairs often lack their lower parts—providing a useful con-
trast to the higher-quality results in room0.

5. Experiments

To evaluate the mapping and segmentation performance
of both the baseline and the improved methods, I leverage
the reference object point clouds and corresponding ground-
truth segmentations. An evaluation script was developed to
compute a set of metrics, including mean per-object IoU,
global IoU, the number of unmatched ground-truth seg-
ments, and the number of orphan mapped segments.

5.1. Evaluation Metrics

The metrics are defined as follows:

* Mean Per-Object IoU: For each ground-truth object,
the Intersection over Union (IoU) is computed with the
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mapped segment that has the highest overlap. Associa-
tions are one-to-one, and unmatched ground-truth ob-
jects receive an IoU of 0. The mean of these values
is reported. This metric captures object-level accuracy
but can be skewed by missed small objects.

Global IoU: Computed as the total volume of intersec-
tion between all matched segments divided by the to-
tal union of ground-truth and predicted segments. This
metric reflects overall scene-level reconstruction qual-
ity and is particularly sensitive to errors in large ob-
jects.

Unmatched Ground-Truth Segments: These are
ground-truth objects that are not associated with any
predicted segment. They often correspond to small or
occluded objects that were not separated during seg-
mentation.

Orphan Mapped Segments: Predicted segments that
are not matched to any ground-truth object (i.e., they
are not the best match for any object). These typi-
cally represent redundant or spurious segmentations.
Although they could potentially be filtered using prior
knowledge about known objects, such filtering is left
for future work.

5.2. Experimental Setup

The experiments are structured as follows:

1. Baseline Evaluation: The default ConceptGraphs
pipeline is evaluated using its standard input of 200
subsampled RGB-D frames. Additional evaluations
are performed at 1:4 and 1:8 subsampling rates to as-
sess robustness under reduced visual input. Baseline
result are on[l

Combined Registration Method: A hybrid approach
is also evaluated, in which all configurations are at-
tempted adaptively. This method is tested on all base-
line input variants to assess overall performance. Eval-
uated using its standard input of 200 subsampled RGB-
D frames. Additional evaluations are performed at 1:4
and 1:8 subsampling rates to assess robustness under
reduced visual input. The combined method results
are on[l

Single Registration Methods: Each proposed regis-
tration method is evaluated independently compared to
the baseline and combiend method:

* FPFH-based registration: Tested with
voxel_size values of 0.02 and 0.1.
* PREDATOR-based registration: Tested with

voxel_down_sample values of 0.025 and
0.08.



For each reference object, registration attempts are re-
tried up to three times per configuration. The results
are on[2

Table [T summarizes the results across all configurations
and subsampling levels.

Table 1. Evaluation metrics across different input subsampling
rates comparing the baseline ConceptGraph mapping to the com-
bined method for Replica scenes room0 (r0) and room2 (r2).
Metrics include mean IoU (mloU), global IoU (gloU), number of
unmatched ground-truth objects (Unm.), and number of orphan
segments (Orph.)

Method mloU gloU Unm. Orph.

0 2 r0 2 0 2|0 r2
Baseline 041 024|049 048 |11 13 |7 3
Baseline 1:4 040 024|047 050|110 14 |3 3
Baseline 1:8 033 024|042 05113 14| 8 4
Combined 049 034 076 065|100 13| 3 3
Combined 1:4 | 049 031 | 0.75 060 | 11 14| 7 3
Combined 1:8 | 0.44 025|075 052 |13 14| 8 4

Table 2. Evaluation of individual registration configurations. Met-
rics include mean IoU (mloU), global IoU (gloU), number of un-
matched ground-truth objects (Unm.), and number of orphan seg-
ments (Orph.).

Method | mIoU | gloU | Unm. | Orph.
Baseline 0.41 0.49 11 7
Combined 0.49 0.75 11 7
FPFH 0.02 0.44 0.70 13 8
FPFH 0.10 0.45 0.69 13 8
PREDATOR 0.025 0.44 0.71 13 8
PREDATOR 0.08 0.44 0.72 13 8

Qualitative results along with visualized ground truth
overlap are depicted on Figure [6]and Figure[7]

The results in Table[I]suggest that reference object regis-
tration significantly improves overall mapping and segmen-
tation performance—particularly in terms of the global IoU
(gloU). This improvement is most evident when large ref-
erence objects are present, as gloU is strongly influenced
by the number of correctly reconstructed points. This is
an important objective for general physical environment un-
derstanding. In contrast, improvements in mean per-object
IoU (mloU) are more limited in scenes that contain many
small, non-reference objects. Notably, a lower mloU is of-
ten correlated with a higher number of unmatched ground-
truth segments, indicating that undetected small objects re-
main a challenge. Addressing this would require improving
the baseline method’s ability to detect and segment non-
reference objects.

Interestingly, both the baseline and the improved meth-
ods demonstrate a degree of robustness to frame subsam-
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Figure 6. Replica room0 qualitative results of the baseline and im-
proved method on the top row. Notice how the incomplete point
cloud mapping has been corrected by the improved method. On
the bottom, the intersection with the ground truth is visualized.

room2 baseline mapping room2 improved reconstruction

room2 baseline evaluation room2 improved reconstruction evaluation
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Figure 7. Replica room?2 qualitative results of the baseline and the
partially improved method on the top row. Notice the large missing
parts from the chairs and how that throws off the method displac-
ing some of the chairs. On the bottom, the intersection with the
ground truth is visualized.

1:4 subsampling

full frame rate 1:8 subsampling

Figure 8. The effect of frame rate subsamplimg on the baseline
method. Less drastic than expected.

pling. See visualization of Figure 8] While performance
metrics do decrease with fewer input frames, even the
1:8 subsampling ratio results in only moderate degrada-
tion. Although some objects and segments are missed and
reference-based registrations become more prone to failure,
the overall drop in performance remains manageable.
While orphan segments are tracked, I have not yet im-
plemented a filtering mechanism to suppress redundant or
overlapping segments—especially those that duplicate ref-
erence objects. Developing such a filter is a promising di-



rection for future work and could further enhance segmen-
tation quality.

There is also a noticeable performance gap between
scenes room0 and room?2, particularly when visualizing
the outputs. The baseline performance in room? is rela-
tively poor (e.g., mloU of 0.24), and the reference-based
registration methods struggle due to minimal geometric
overlap between the partial reconstructions and the refer-
ence models.

Table [2| supports these observations. While all registra-
tion methods contribute to improvements over the baseline,
each method fails to register certain objects in isolation. The
combined method, which leverages multiple configurations,
consistently achieves the best performance, validating its
robustness in diverse scenarios.

6. Conclusion

In this project, I demonstrated that point cloud mapping
and segmentation can be significantly improved through
the integration of reference object point clouds, supporting
the initial hypothesis. This form of exact object matching
holds strong potential for enhancing downstream processes
in scene graph construction frameworks such as Concept-
Graphs—for example, by enabling the injection of object-
specific metadata (e.g., affordances) directly into the graph.

That said, the current method would benefit from fur-
ther tuning, particularly with regard to threshold selection
and robustness across varied scenes. Domain-specific fine-
tuning of components like PREDATOR could also yield
notable performance gains. As future work, I plan to im-
prove the adaptability and parameterization of the system
and explore how richer textual metadata associated with ref-
erence objects could further enhance scene graph generation
in ConceptGraphs.
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